Relational Representation Theorems for Extended Contact Algebras

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Lambda Abstraction Algebras: Representation Theorems

Lambda abstraction algebras (LAAs) are designed to algebraize the untyped lambda calculus in the same way cylindric and polyadic algebras algebraize the first-order predicate logic. Like combinatory algebras they can be defined by true identities and thus form a variety in the sense of universal algebra, but they differ from combinatory algebras in several important respects. The most natural L...

متن کامل

A representation theorem for Boolean contact algebras

We prove a representation theorem for Boolean contact algebras which implies that the axioms for the Region Connection Calculus [20] (RCC) are complete for the class of subalgebras of the algebras of regular closed sets of weakly regular connected T1 spaces.

متن کامل

Relational Representation Theorems for Some Lattice-Based Structures

The major elements of the method of proving relational representation theorems presented in this paper are, on the one hand, Urquhart representation theorem for lattices [17] and Allwein and Dunn developments on Kripke semantics for linear logic (see [1] and also [4]), and on the other hand, a generalisation of Jonsson and Tarski ideas [9] which inspired the developments in [5], [6] and [13]. W...

متن کامل

On Monadic Quantale Algebras: Basic Properties and Representation Theorems

Motivated by the concept of quantifier (in the sense of P. Halmos) on different algebraic structures (Boolean algebras, Heyting algebras, MV-algebras, orthomodular lattices, bounded distributive lattices) and the resulting notion of monadic algebra, the paper introduces the concept of a monadic quantale algebra, considers its properties and provides several representation theorems for the new s...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Studia Logica

سال: 2020

ISSN: 0039-3215,1572-8730

DOI: 10.1007/s11225-020-09923-0